9,461 research outputs found

    A Numerical Study of Wave Propagation in a Confined Mixing Layer by Eigenfunction Expansions

    Get PDF
    It is well known that the growth rate of instability waves of a two-dimensional free shear layer is reduced greatly at supersonic convective Mach numbers. In previous works, it has been shown that new wave modes exist when the shear layers are bounded by a channel due to the coupling effect between the acoustic wave modes and the motion of the mixing layer. The present work studies the simultaneous propagation of multiple stability waves using numerical simulation. It is shown here that the coexistence of two wave modes in the flow field can lead to an oscillatory growth of disturbance energy with each individual wave mode propagating linearly. This is particularly important when the growth rates of the unstable waves are small. It is also shown here that the propagation of two neutrally stable wave modes can lead to a stationary periodic structure of rms fluctuations. In the numerical simulations presented here the forced wave modes are propagating at same frequency, but with different phase velocities. In order to track the growth of each wave mode as it propagates downstream, a numerical method that can effectively detect and separate the contribution of the individual wave is given. It is demonstrated that by a least square fitting of the disturbance field with eigenfunctions the amplitude of each wave mode can be found. Satisfactory results as compared to linear theory are obtained. © 1993 American Institute of Physics

    A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    Get PDF
    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented

    A Fast Numerical Solution of Scattering by a Cylinder: Spectral Method for the Boundary Integral Equations

    Get PDF
    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converge slowly for high frequency waves. In this paper, a fast numerical solution is presented for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single- and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, it is shown that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented. © 1994, Acoustical Society of America

    The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    Get PDF
    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined

    A spectral boundary integral equation method for the 2-D Helmholtz equation

    Get PDF
    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated

    Simulation of Sound Absorption by Scattering Bodies Treated with Acoustic Liners Using a Time-Domain Boundary Element Method

    Get PDF
    Reducing aircraft noise is a major objective in the field of computational aeroacoustics. When designing next generation quiet aircraft, it is important to be able to accurately and efficiently predict the acoustic scattering by an aircraft body from a given noise source. Acoustic liners are an effective tool for aircraft noise reduction, and are characterized by a complex valued frequency-dependent impedance, Z(w). Converted into the time-domain using Fourier transforms, an impedance boundary condition can be used to simulate the acoustic wave scattering of geometric bodies treated with acoustic liners. This work uses an admittance boundary condition where the admittance, Y(w), is defined to be the inverse of impedance, i.e., Y(w) = 1/Z(w). An admittance boundary condition will be derived and coupled with a time domain boundary integral equation. The solution will be obtained iteratively using spatial and temporal basis functions and will allow for acoustic scattering problems to be modeled with geometries consisting of both unlined and soft surfaces. Stability will be demonstrated through eigenvalue analysis

    On the Implementation and Further Validation of a Time Domain Boundary Element Method Broadband Impedance Boundary Condition

    Get PDF
    A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current time domain impedance boundary condition formulation, the instability can be effectively suppressed in computation. Proposed formulation and implementation are validated using NASA Langley Research Center Grazing Flow Impedance Tube (GFIT) experimental dataset with satisfactory results. Moreover, a minimization procedure for finding the poles and coefficients of the broadband multiple impedance model is formulated in this paper by which, unlike the commonly used vector-fitting method, passivity of the model is ensured. Numerical tests show the proposed minimization approach is effective for modeling liners that are commonly used in aeroacoustics applications

    Time Domain Boundary Element Method Prediction of Noise Shielding by a NACA 0012 Airfoil

    Get PDF
    As aircraft noise constraints become more stringent and the number/mixture of aircraft configurations grows, it becomes more important to understand the interaction of individual aircraft noise sources with nearby aircraft structures. Understanding these interactions and exploring possible approaches to mitigate or exploit their acoustic impact is essential for overcoming key noise barriers. This paper describes the further validation of a time domain boundary element approach for the prediction of the interactions between incident noise sources and nearby aircraft structures. Predictions were completed for multiple source locations and comparisons of these results with measured data are presented. Overall, very good agreement between the predicted and measured quantities was obtained in both the pressure time histories and pressure spectra. The effects of surface mesh resolution and source waveform are also presented. The very promising results demonstrate the capabilities of the time domain methodology employed in this study and provide further confidence in its continued development and application in future studies

    Parametric Instability of Supersonic Shear Layers Induced by Periodic Mach Waves

    Get PDF
    It is suggested that parametric instability can be induced in a confined supersonic shear layer by the use of a periodic Mach wave system generated by a wavy wall. The existence of such an instability solution is demonstrated computationally by solving the Floquet system of equations. The solution is constructed by means of a Fourier-Chebyshev expansion. Numerical convergence is assured by using a very large number of Fourier and Chebyshev basis functions. The computed growth rate of the induced flow instability is found to vary linearly with the amplitude of the mach waves when the amplitude is not excessively large. This ensures that the instability is, indeed, tied to the presence of the Mach waves. It is proposed that enhanced mixing of supersonic shear layers may be achieved by the use of such a periodic Mach wave system through the inducement of parametric instabilities in the flow. © 1991 American Institute of Physics
    corecore